Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides

نویسندگان

  • Ji Hye Kim
  • Eun Ju Yun
  • Sora Yu
  • Kyoung Heon Kim
  • Nam Joo Kang
چکیده

3,6-Anhydro-l-galactose (AHG), a major monomeric constituent of red macroalgae (Rhodophyta), was recently reported to possess skin whitening activity. Moreover, AHG-containing oligosaccharides, such as agarooligosaccharides (AOSs) and neoagarooligosaccharides (NAOSs), have various physiological activities, including anti-inflammatory, antioxidant, and skin moisturizing effects. In this study, AHG and NAOSs were produced from agarose by enzymatic reactions catalyzed by an endo-type β-agarase, an exo-type β-agarase, and a neoagarobiose hydrolase. In a cell proliferation assay, AHG, AOSs, and NAOSs at 12.5, 25, and 50 μg/mL concentrations did not exhibit cytotoxicity toward murine B16 melanoma cells or human epidermal melanocytes. In an in vitro skin whitening activity assay of AHG, AOSs, and NAOSs at 50 μg/mL, AHG showed the highest skin whitening activity in both murine B16 melanoma cells and human epidermal melanocytes; this activity was mediated by the inhibition of melanogenesis. Neoagarotetraose and neoagarohexaose also exhibited in vitro skin whitening activity, whereas neoagarobiose and AOSs with degrees of polymerization of 3 (agarotriose), 5 (agaropentaose), and 7 (agaroheptaose) did not. Therefore, AHG is responsible for the skin whitening activity of agar-derived sugars, and the structural differences among the AHG-containing oligosaccharides may be responsible for their different skin whitening activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and characterization of a novel enzyme, alpha-neoagarooligosaccharide hydrolase (alpha-NAOS hydrolase), from a marine bacterium, Vibrio sp. strain JT0107.

A novel enzyme, alpha-neoagarooligosaccharide hydrolase (EC 3.2.1.-), which hydrolyzes the alpha-1,3 linkage of neoagarooligosaccharides to yield agaropentaose (O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-D-galactose], agarotriose [O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro- alpha-L-galactopyranosyl (1-->3)-D-galactose], agarobiose [O-beta-D-galactopyrano...

متن کامل

A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers.

Marine red macroalgae have emerged to be renewable biomass for the production of chemicals and biofuels, because carbohydrates that form the major component of red macroalgae can be hydrolyzed into fermentable sugars. The main carbohydrate in red algae is agarose, and it is composed of D-galactose and 3,6-anhydro-L-galactose (AHG), which are alternately bonded by β1-4 and α1-3 linkages. In this...

متن کامل

Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from Saccharophagus degradans 2-40.

Many agarolytic bacteria degrade agar polysaccharide into the disaccharide unit neoagarobiose [O-3,6-anhydro-alpha-L-galactopyranosyl-(1-->3)-D-galactose] using various beta-agarases. Neoagarobiose hydrolase is an enzyme that acts on the alpha-1,3 linkage in neoagarobiose to yield D-galactose and 3,6-anhydro-L-galactose. This activity is essential in both the metabolism of agar by agarolytic ba...

متن کامل

Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107.

A marine bacterial strain that decomposes the cell walls of some seaweeds, including a Laminaria sp. and Undaria pinnatifida, has been isolated from seawater. This strain has been classified to the genus Vibrio. One of the enzymes which the bacteria secreted into the culture medium was isolated and purified 45-fold from the culture fluid by a combination of ammonium sulfate precipitation and su...

متن کامل

Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology.

Microwave-assisted extraction (MAE) of agar from Gracilaria vermiculophylla, produced in an integrated multitrophic aquaculture (IMTA) system, from Ria de Aveiro (northwestern Portugal), was tested and optimized using response surface methodology. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the physical and chemical proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017